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            Todd Harman,  Qingyu Meng NSF PetaApps  2009-2014 $1M, P.I. MB  

PSAAP Clean Coal Boilers:   Phil Smith (P.I.), Jeremy Thornock James Sutherland  
etc Alan Humphrey John Schmidt  DOE NNSA 2013-2018 $16M (MB Cs lead) 

Electronic Materials by Design:   MB (PI) Dmitry Bedrov, Mike Kirby, Justin                    
Hooper, Alan Humphrey  Chris Gritton,   +  ARL TEAM 2011-2016 $12M 

** Now at NVIDIA 



Harrod SC12: “today’s bulk synchronous (BSP), 
distributed memory, execution  model  is 
approaching an efficiency, scalability, and power 
wall.”  
 
Sarkar et al. “Exascale programming will require 
prioritization of critical-path and non-critical path 
tasks, adaptive directed acyclic graph scheduling of 
critical-path tasks, and adaptive rebalancing of all 
tasks ...” 
“ DAG Task-based programming has always been a 
bad idea. It was a bad idea when it was introduced 
and it is a bad idea now “ Parallel Processing Award 
Winner 
 
Much architectural uncertainty,  many storage and 
power issues. Adaptive portable software needed  
 
Power needs force 
use of accelerators 
 

The Exascale challenge for Future Software?  
Compute 
----------------- 
Communicate 
----------------- 
Compute  



Some Historical Background 
• Vivek Sarkar’s thesis (1989) 

• Graphical rep. for parallel programs 
• Cost model  
• Compile time cost assignment  
• Macro-data flow for execution 
• Compile time schedule 
• Prototype implementation 20 processors 

• Charm++  Sanjay Kale et al. 1990s onward 
• Uintah   Steve Parker 1998 onward 

Present Day 
Much work on task graphs –  
 e.g. O. Sinnen “Task Scheduling for Parallel Systems” 
 



Task Graph Based Languages/Frameworks 
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Kale (1990) Charm++: 
Object-based Virtualization   

Plasma (Dongarra): 
DAG based  
Parallel linear  
algebra  software 
 

Uintah Taskgraph 
based PDE Solver 
(Parker 1998) 

StarPU 
Task Graph 
Runtime 



Sterling et al. Express Project - faster? 

Why does Dynamic Execution of  
Directed Acyclic Graphs  Work Well?  

• Eliminate spurious 
synchronizations points  
 

• Have multiple task-graphs 
per multicore (+ gpu) node 
– provides excess 
parallelism -  slackness 
 

• Overlap  communication 
with computation by 
executing tasks as they 
become available – avoid 
waiting (use out-of order 
execution). 
 

• Load balance complex 
workloads by having a 
sufficiently rich mix of 
tasks per multicore node 
that load balancing is done 
per node 
 
 

 



Parallel Objects, 
Adaptive Runtime System  

Libraries and Tools 

APPLICATIONS  CHARM++  [SOURCE: KALE]  

Crack Propagation 

Space-time meshes 

Computational 
Cosmology 

Rocket Simulation 

Protein Folding 

Dendritic Growth 

Quantum Chemistry 
LeanCP 

Develop abstractions in context of full-scale applications 

NAMD: Molecular Dynamics 

STM virus simulation 



UINTAH  FRAMEWORK 



Uintah(X) Architecture Decomposition 

 Application Specification via 
ICE MPM ARCHES or 
NEBO/WASATCH DSL  

 
 
Abstract task-graph program 

that  
 
 
Is compiled for  
 
Executes on: Runtime 

System with: asynchronous out-
of-order execution,  work 
stealing, Overlap communication 
& computation.Tasks running on 
cores and accelerators 

Scalable I/O via Visus PIDX 

Simulation 
Controller 

Scheduler 

Load 
Balancer Runtime System  

ARCHES 

NEBO 
WASATCH 

PIDX  VisIT  

MPM 
ICE 

    UQ DRIVERS 

CPU  GPU  Xeon Phi 

Some components have not 
changed as we have gone 
from 600 to 600K cores 



ICE is a cell-centered finite volume 
method for Navier Stokes equations 
 

ICE Structured Grid Variable (for Flows) are Cell 
Centered Nodes, Face Centered Nodes. 
Unstructured Points (for Solids) are MPM  
Particles 

 

Uintah Patch, Variables and AMR Outline  

ARCHES is a combustion code using several  
different  radiation models and linear  solvers 
 
Uintah:MD  based on Lucretius is a new molecular dynamics component 

• Structured Grid + Unstructured 
Points 

• Patch-based Domain 
Decomposition 

• Regular Local  Adaptive Mesh 
Refinement 
 

• Dynamic Load Balancing 
• Profiling + Forecasting Model 
• Parallel Space Filling Curves 

• Works on MPI and/or thread level 
 

 



Burgers Example I  <Grid> 
     <Level> 
         <Box label = "1"> 
        <lower>      [0,0,0]        </lower> 
        <upper>      [1.0,1.0,1.0]  </upper> 
        <resolution> [50,50,50]     </resolution> 
        <patches>    [2,2,2]        </patches> 
        <extraCells> [1,1,1]        </extraCells> 
      </Box> 
    </Level> 
  </Grid> 

void  Burger::scheduleTimeAdvance( const LevelP& level,  
                                   SchedulerP& sched) 
{ 
   .. 
   task->requires(Task::OldDW, u_label, Ghost::AroundNodes, 1); 
  task->requires(Task::OldDW, sharedState_->get_delt_label()); 
   
  task->computes(u_label); 
  sched->addTask(task, level->eachPatch(), sharedState_->allMaterials()); 
} 

25 cubed patches 
8 patches 
One level of halos 
 

Get old solution from 
old data warehouse  
One level of halos 
Compute new solution  
 



Burgers Equation code  
void Burger::timeAdvance(const ProcessorGroup*,    const PatchSubset* patches,    
 const MaterialSubset* matls,  DataWarehouse* old_dw, DataWarehouse* new_dw) 
 //Loop for all patches on this processor 
 { for(int p=0;p<patches->size();p++){ 
//Get data from  data warehouse including 1 layer of  "ghost" nodes from 

surrounding patches 
     old_dw->get(u, lb_->u, matl, patch, Ghost::AroundNodes, 1); 
 
    // dt, dx Time and space increments  
    Vector dx = patch->getLevel()->dCell(); 
        old_dw->get(dt, sharedState_->get_delt_label()); 
     
   // allocate memory for results new_u 
        new_dw->allocateAndPut(new_u, lb_->u, matl, patch); 
     
  // define iterator range  l and h    lots missing here  and Iterate through all the 

nodes 
    for(NodeIterator iter(l, h);!iter.done(); iter++){     
      IntVector n = *iter; 
      double dudx = (u[n+IntVector(1,0,0)] - u[n-IntVector(1,0,0)]) /(2.0 * dx.x()); 
       double du = - u[n] * dt * (dudx); 
      new_u[n]= u[n] + du; 
    } 

0t xU UU�  



Uintah Directed Acyclic (Task) Graph-
Based Computational Framework  

Each task defines its computation with 
required inputs and outputs 

 
Uintah uses this information to create a task 

graph of computation (nodes) + 
communication (along edges) 

 
Tasks do not explicitly define communications 

but only what inputs they need from a 
data warehouse and which tasks need to 
execute before each other.  

Communication is overlapped with 
computation 

 
Taskgraph is executed adaptively and 

sometimes out of order, inputs to tasks 
are saved 

Tasks get data from OLD Data Warehouse and put results into NEW Data Warehouse 



Runtime System  



The nodal task soup 

Task Graph Structure on a Multicore Node with multiple patches  

This is not a single graph. Multiscale and 
Multi-Physics merely add flavor to the “soup”. 

halos halos external 
halos 

external 
halos 



The DAG Approach is 
not a silver bullet  

Uintah Phase 1 1998-2005 – overlap 
communications with computation. Static 
task graph execution  standard data 
structures one MPI process per core. No 
AMR. 
 
Uintah Phase 2 2005-2010 improved fast 
data structures, load balancer. AMR to 12k 
cores, then 100K cores using new approach 
before data structures cause problems. 
Out of order and dynamic task execution.  
 
Uintah Phase 3 2010-  Hybrid model. 
Theaded  runtine system on node. One MPI 
process and one data warehouse per node. 
Multiple cores and GPUs grab tasks as 
needed. Fast scalable use of hypre for 
linear equations.  

OLD CSAFE 
RESULTS 

OLD 
CSAFE 
RESULTS 



UINTAH SCALABILITY 



Explosives Problem 1 Fluid-Structure Benchmark 
Example: AMR MPMICE 

A PBX explosive flow quickly pushing a piece of its metal container 

Flow velocity and particle volume  Computational grids and particles 

Grid Variables:        Fixed number per patch, relative easy to balance    
Particle Variables:   Variable  number per patch,  hard to load balance 



Thread/MPI Scheduler (De-centralized) 

• One MPI Process per Multicore node 
• All threads directly pull tasks from task queues execute tasks and 

process MPI sends/receives 
• Tasks for one patch may run on different cores 
• One data warehouse and task queue per multicore node 
• Lock-free data warehouse enables all cores to access memory 

quickly 
 

Core runs tasks  and checks  
queues 

N
etw

ork 

Data 
Warehouse 

 
(variables 
directory) 

PUT 
 

GET 

Core runs tasks  and checks  
queues 

Core runs tasks  and checks  
queues 

completed task 

Task Queues 
New tasks  

completed task 

Threads 

Shared  
Data 

Ready task 

sends 

receives 

Task 
Graph 

PUT 
 

GET 

MPI  



Select Task & 
Post MPI Receives 

Select Task & 
Execute Task 

Check Records & 
Find Ready Tasks 

Comm 
Records 

Internal 
Task 

Queue 

External 
Task 

Queue 

Task 
Graph 

Post Task  
MPI Sends 

N
etw

ork  

 
Data 

Warehouse 
(one per-

node) 
 

put 

valid 

send 

get 

recv 

MPI_ 
ISend 

MPI_ 
IRecv 

MPI_ 
Test 

Uintah    Runtime    System 

Thread 1 
2 

3 



Raw Data:  49152 doubles                                   31360 doubles 
MPI buffer:  28416 doubles                                  10624 doubles      
Total:           75K doubles                                     40K doubles                            

MPI: Thread/MPI: 

(example on Kraken, 12 cores/node, 98K core 11% of memory needed 

New Hybrid Model Memory Savings: Ghost Cells 

Local Patch 

Ghost Cells 



Task prioritization algorithms  

TASK 
POOL 

Algorithm Random FCFS PatchOrder  MostMsg. 
Queue Length 3.11 3.16 4.05 4.29 
Wait Time 18.9 18.0 7.0 2.6 
Overall Time 315.35 308.73 187.19 139.39 

Task pool 
to be executed 

MPI sends 
Sub-domain 

Prioritize tasks with external communications over purely internal ones  

Executing the task 
pool in different 
ways leads to 
different 
communications 
patterns 



Granularity Effect 
• Decrease patch size 

• (+) Increase queue length 
• (+) More overlap, lower 

task wait time  
• (+) More patches, better 

load balance  
• (-) More MPI messages 
• (-) More regrid overheads 

• Other Factors 
• Problem size 
• Implied task level 

parallelism  
• Interconnection 

bandwidth and legacy 
• CPU cache size 

• Solution- Self Tuning? 
 

 



Nodal Performance and Global ScalbilityScalability 
on Titan  

    
One flow with particles moving 
3-level AMR MPM ICE 70% efficiency 
At 256K cores vs 16K cores 

OLD Scaling 
Breakdown 

Scaling fine on Jaguar XK6 
Breakdown on Jaguar XK7 with 
more faster cores and a faster  
network – needed a rewrite of 
Data Warehouse to allow cores 
faster access 



Lock-Free Data Structures 

Using atomic instruction set 
Variable reference counting 

fetch_and_add, fetch_and_sub 
compare_and_swap  
both read and write simultaneously  

Data warehouse  
Redesigned variable container 
Update: compare_and_swap  
Reduce: test_and_set 

 

Global scalability depends on the details of nodal run-time system. 
Change from Jaguar to Titan – more faster cores and faster communications 
broke our Runtime System which worked fine with locks previously 



Scalability is at least partially  achieved by not 
executing tasks in order e.g. AMR fluid-structure 
interaction 

Straight line represents given order of tasks   Green X   shows 
when a task  is actually executed.    
Above the line means late  execution while below the line means 
early execution took place.  More “late” tasks than “early” ones 
as e.g. 
TASKS: 1 2 3 4 5                   1  4   2  3 5 

Early  Late execution  



Weak Scaling AMR+MPM ICE 
M = Mira, T=Titan,   S=Stampede      

/Proc 

Only 2   
patches 
per core 
Includes 
packing  
unpacking 
and data 
warehouse 
 
Only 8 
interior 
patches 
from 32  



Deflagration wave moves at 
~400m/s  not  all explosive 
consumed. Detonation  wave 
moves 8500m/s all explosive 
consumed. 

NSF funded modeling  of  
Spanish Fork Accident 8/10/05 
Speeding truck with 8000 
explosive boosters each 
with 2.5-5.5 lbs of explosive 
overturned and caught fire 
Experimental evidence for   
a transition from 
deflagration to detonation? 
   
 



Spanish Fork 
Accident 

500K mesh patches 
1.3 Billion mesh cells 
 7.8 Billion particles 

At every stage when we move 
to the next generation of problems  
Some of the algorithms and data 
structures need to be replaced .  
 
Scalability at one level is no certain  
Indicator fro problems or machines  
An order of magnitude larger 



MPM AMR ICE 
Strong Scaling  

* 

Complex fluid-structure interaction problem 
with adaptive mesh refinement, see SC13/14 paper 
NSF funding.  

Resolution B  
29 Billion particles 
4 Billion mesh cells 
1.2 Million mesh 
patches 

Mira DOE BG/Q 
768K cores 
Blue Waters Cray 
XE6/XK7 700K+ 
cores 



Summary of Scalability Improvements 

(i) Move to a one MPI process per multicore node 
reduces memory to less than 10% of previous for 
100K+ cores 
 

(ii) Use optimal  size patches to balance overhead and 
granularity 16x16x 16 to 30x30x30. 
 

(iii) Use only one data warehouse but allow all cores 
fast access to it, through the use of atomic 
operations. 
 

(iv) Prioritize tasks with the most external 
communications 
 

(v) Use out-of-order execution when possible  
 



An Exascale Design Problem - Alstom Clean Coal Boilers  

For 350MWe boiler problem. LES resolution  
needed: 1mm per side for each computational volume = 9x 10ଵଶ  cells 
This is one thousand times larger than the largest problems we solve 
today. 

Temperature field  

Prof. Phil Smith Dr Jeremy Thornock  ICSE  



Existing Simulations of Boilers using ARCHES in Uintah 
(i) Traditional Lagrangian/RANS approaches  do not address well particle effects 
(ii) LES has potential to predict oxy---coal flames and to  be an important design tool 

(iii) LES is “like DNS” for coal, but 1mm mesh needed to capture phenomena 

 Structured, finite-volume  method,  Mass, momentum, energy with radiation 

 Higher-order temporal/spatial numerics,   LES  closure,  Tabulated chemistry 

 PDF mixing models,  DQMOM, modeling particles 
 
 
 
   

Mesh spacing filter 



Uncertainty Quantified 
Runs on a Small Prototype 
Boiler 

Red is experiment 
Blue is simulation 
Green is consistent 
 
Absence of scales for commercial  
reasons 

[Source: Jeremy Thornock ] 



Each Mira Run is scaled wrt the Titan Run at 256 cores 
Note these times are not the same for different patch sizes.  

2.2 Trillion 
DOF  

Weak Scalability of Hypre Code 

Linear Solves arises from Low Mach Number Navier –Stokes Equations 

Use Hypre Solver from LLNL 
Preconditioned Conjugate Gradients 
on regular mesh patches used 
 
Multi-grid pre-conditioner used 
Careful adaptive strategies needed 
to get scalability 

One radiation solve 
every 10 timesteps 



NEBO/Wasatch Example  

1
( , )

n
h ij i i
J T Y T h JO

 
 � � �¦

Energy equation 
.( ) . 0h

e
eu J terms

t
U Uw

�� �� �  
w

Enthalpy diffusive flux 

1

( , ) ( , )
ns

T
i ij j j i j

j

J D T Y Y D T Y T
 

 � � � �¦

Dependency 
specification 

Execution 
order 

Express complex pde functions as 
DAG - automatically construct 
algorithms from expressions 

Define field operations needed to 
execute tasks (fine grained vector 
parallelism on the mesh) 

User writes only field operations code . 
Supports field & stencil operations 
directly - no more loops!  

Strongly typed fields ensure valid 
operations at compile time. Allows a 
variety of implementations to be tried 
without modifying application code. 

Scalability on a node - use Uintah 
infrastructure to get scalability across 
whole system 

[Sutherland Earl Might] 



Running Task 
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•  Use CUDA Asynchronous 
API  

•  Automatically generate 
CUDA streams for task 
dependencies 

•  Concurrently execute kernels 
and memory copies 

•  Preload  data before task 
kernel executes 

•  Multi-GPU  support   

hostComputes 

hostRequires 

existing host 
memory 

devComputes 

devRequires 

Pin this memory with 
CudaHostRegister() 

Page locked buffer 

cudaMemcpyAsync(H2D) 

computation 

cudaMemcpyAsync(D2H) 
Free pinned host 

memory 

Result back on host 

Call-back executed here 
(kernel run) 

Automatic D2H copy here 

GPU Task and Data 
Management 

Framework Manages Data Movement 
Host Å Æ Device 

Data Transfer Kernel Execution 
Kernel Execution 

Data Transfer 

Normal Page-locked Memory 



Wasatch – Nebo Recent Milestones 
• Wasatch is solving (nonreacting  miniboiler~3-4x 

speedup over the non-DSL approach. 
• New Nebo backend for CPU resultied in 20-30% 

speedup in the entire Wasatch code base. 
• Much of the Wasatch code base is GPU-ready 
• Arches plus SpatialOps & Nebo EDSL being scoped. 

Good GPU scaling  with (>32^3 per patch). 
Loop fusion (heavy GPU kernels) needed e.g “coupled 
source & diffusion”  

[James Sutherland] 



DESIGNING FOR EXASCALE 
Clear trend towards accelerators e.g. GPU but also Intel MIC – new NSF 
“Stampede” 10-. 15PF  Balance factor = flops/bandwidth - high 
 
GPU performance “ok” for stencil-based codes ,2x over multicore cpu 
estimated and achieved for ICE . Similar results by others. 
Network and memory performance more slowly growing than cpu/gpu 
performance. GPU perf.of ray-tracing radiation method is 100x  cpu 
  
Overlapping and hiding Communications essential 
 
 



NVIDIA AMGX Linear Solvers on GPUs 
Fast, scalable iterative gpu linear solvers for packages e.g.,  
Flexible toolkit provides GPU accelerated Ax = b solver 
Simple API for multiple apps domains.  
Multiple  GPUs (maybe thousands)  with scaling 
 

Key Features 
Ruge-Steuben algebraic MG 
Krylov methods: CG, 
GMRES, BiCGStab, 
Smoothers and Solvers: 
Block- Jacobi, Gauss-Seidel, 
incomplete LU,  
 
Flexible composition system 
MPI support OpenMP 
support, Flexible and high 
level C  API,   
 

Free for non-commercial  use 
Utah access  via Utah CUDA  COE. 



DESIGNING FOR EXASCALE 
Clear trend towards accelerators e.g. GPU but also Intel MIC – NSF 
“Stampede” Balance factor = flops/bandwidth – high.PORTABILITY IS 
THE KEY ISSUE:NEW CODE  - use Wasatch to generate code for GPUs 
and MICs .How do we handle the challenge of existing code?  
 

� Standard C++, Not a language extension 

� In spirit of TBB, Thrust & CUSP, C++AMP, LLNL’s RAJA, ... 

� Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ... 

� Uses C++ template meta-programming 

� Multidimensional Arrays, with a twist 
� Layout mapping: multi-index (i,j,k,...) l memory location 
¾Choose layout to satisfy device-specific memory access pattern 

� Layout changes are invisible to the user code 

Kokkos: A Layered Collection of Libraries 

  

[source Carter Edwards and Dan Sunderland] 



Evaluate Performance Impact of Array Layout 

[Edwards and Sunderland] 

44 

z Molecular dynamics computational kernel in miniMD 
z Simple Lennard Jones force model: 
z Atom neighbor list to avoid N2 computations 
 

 

 

z Test Problem 

z 864k atoms, ~77 neighbors 

z 2D neighbor array 

z Different layouts CPU vs GPU 

z Random read ‘pos’ through 

GPU texture cache  

z Large performance loss 
with wrong array layout 

Fi= �
j , rij< r cut

6 İ[(Ȣrij)
7

í 2(Ȣr ij)
13]

pos_i = pos(i);  
for( jj = 0; jj < num_neighbors(i); jj++) { 
  j = neighbors(i,jj);  
  r_ij = pos_i – pos(j); //random read 3 floats for pos 
  if (|r_ij| < r_cut) f_i += 6*e*((s/r_ij)^7 – 2*(s/r_ij)^13) 
} 
f(i) = f_i; 
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correct layout

(with texture)

correct layout

(without texture)

wrong layout

(with texture)



Proposed Uintah(X) Architecture Decomposition 

Simulation 
Controller 

Scheduler 

Load 
Balancer Runtime System  

ARCHES 

NEBO 
WASATCH 

PIDX  VisIT  

MPM 
ICE 

    UQ DRIVERS 

CPU  GPU  Xeon Phi 

Kokkos Intermediate Layer   

Applications code 

Abstract C++ Task Graph Form  

Compilation into C++ Cuda etc  

Adaptive Execution of tasks  
 
 
 
 
On specific processors  



Resilience  

Need interfaces at system level to help us consider: 
Core failure –  reroute tasks 
Comms failure – reroute message 
Node failure – need to replicate patches use an AMR 
type approach in which a coarse patch is on another 
node. In 3D has 12.5% overhead – suggested by 
Qingyu Meng Mike Heroux and others.  
Will explore this from fall 2014 onwards. Just how 
bad is the problem? 



Summary 

• DAG abstraction important for achieving scaling 
• Layered approach very important for not needing to change 

applications code  
• Scalability still requires  much engineering of the runtime 

system. 
• General approach very powerful indeed. 
• Obvious applicability to new architectures 
• DSL approach very important very future 
• Scalability still a challenge even with DAG approach – which 

does work amazingly well, e.g. for fluid-structure calculations 
• GPU and MIC  development ongoing 
• The approach used here shows promise for very large core 

and GPU counts but using these architectures is an exciting 
challenge 

   



• Complex problems require 
differing scales 
Example:  Battery Cathode 
(Atomistic/CG + MPM) 
Mesoscopic (or larger) cathode 
particle mechanical response via 
MPM.Microscopic 
particle/electrolyte interactions at 
Atomistic/CG scale 

     Computational Challenges 
(i) Marrying simulation techniques across multiple 
orders of magnitudes.  
(ii) Quantifying Uncertainty across multiple scales 

Example of AMR MPM 
Coupling with MD 
[Nitin Daphalapurkar] 

ARL: Multi-scale Modeling of Electronic Materials  
Utah, Boston, RPI, Chicago,  Harvard, Brown,  Penn State  

Vision: Longer lasting 
batteries and fuel 
Cells for extreme 
environments 
 
New generation of 
LEDs and night-vision 
 
New materials 



Weak and Strong Scalability:  
Problem size n on p cores takes time T(n,p)  

Strong Scalability   ( , ) ( ,1) /T n p T n p 

Weak Scalability 
 
Solve a problem that is p times as large in the same time on  
p cores  

( , ) ( ,1)T np p T n 

Both weak and strong scalability  only if linear complexity 
[Tirado + Martin] 1998 ( ,1)T n nD 

Theorem  

Try to solve the same problem p times more quickly on p cores 



Today’s machines 
used in this talk  

SYSTEM Vendor/ 
Type 

CPUs and 
Accelerators  

Cores Mem/ 
Node 

Inter- 
conn. 

Peak 
Pflop 

TITAN Cray  
XK7 

AMD Opteron 2.6Ghz 
NVIDIA KEPLER 

299008 
18K x 2496 

32GB Cray 
Gemini 

27 

Stampede Dell Zeus Intel Sandybridge 
2,7GHz 
Intel Xeon Phi 

102400 
390400 

32GB Infinib-
and 

4 

Mira IBM Blue 
Gene Q 

Power PC A2 1.6Ghz 786432 16GB 5D 
Torus 

10 

NSFs Kraken and DOEs Titan, DoD machines  and local HP 
machines are our workhorses. 
THESE MACHINES WILL SEEM “SMALL” IN 2025 and will 
the equivalent of large regional  or lab machines   but are 
ranked  2,7 and 4 in the world today 



GPU Task Management 
With Uintah’s knowledge of the task-graph, task data can 
be automatically transferred asynchronously to the  device 
before a GPU task executes 

 All device memory allocations 
and asynchronous transfers 
handled automatically 
 

 Can handle multiple devices on-
node 
 

 All device data is made available 
to component code via convenient 
interface 

 

hostComputes 

hostRequires 

existing host 
memory 

devComputes 

devRequires 

Pin this memory with 
cudaHostRegister() 

Page locked buffer 

cudaMemcpyAsync(H2D) 

computation 

cudaMemcpyAsync(D2H) 

Free pinned 
host memory 

Result back on host 

Call-back executed here 
(kernel run) 

Component requests 
D2H copy here 

1 

2 

3 

5 

6 

4 



Memory Savings 
• Global Meta-data copies 

• 60 bytes or 7.5 doubles per patch 
• Each copy per core vs Each copy per node 

• MPI library buffer overhead 
• Results:   

Ratio = Thread MPI memory usage
MPI memory usage × 100% 

 
 
 
 

Cores 3072 6144 12288 24576 49152 98304 

Percent 61% 47% 36% 27% 18% 11% 

AMRICE: Simulation of the transport of two fluids with a prescribed initial 
velocity of Mach two:  435 million cells, strong scaling runs on Kraken 



Uintah Applications 

Angiogenesis 

Micropin Flow 

Shaped Charges 

Sandstone 
Compaction 

Foam 
Compaction 

Industrial 
Flares 

Explosions 

Carbon capture and cleanup 

Explosions 
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